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ABSTRACT
In applications such as paleontology and medical genetics
the 0-1 data has an underlying unknown order (the ages
of the fossil sites, the locations of markers in the genome).
The order might be total or partial: for example, two sites in
different parts of the globe might be ecologically incompara-
ble, or the ordering of certain markers might be different in
different subgroups of the data. We consider the following
problem. Given a table over a set of 0-1 variables, find a
partial order for the rows minimizing a score function and
being as specific as possible. The score function can be,
e.g., the number of changes from 1 to 0 in a column (for
paleontology) or the likelihood of the marker sequence (for
genomic data). Our solution for this task first constructs
small totally ordered fragments of the partial order, then
finds good orientations for the fragments, and finally uses a
simple and efficient heuristic method for finding a partial or-
der that corresponds well with the collection of fragments.
We describe the method, discuss its properties, and give
empirical results on paleontological data demonstrating the
usefulness of the method. In the application the use of the
method highlighted some previously unknown properties of
the data and pointed out probable errors in the data.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Data mining

General Terms
Algorithms
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1. INTRODUCTION
The prototypical examples of data mining include the

analysis of large masses of 0-1 data. The typical assump-
tion for such data is that there is no underlying order or
partial order for the attributes (variables, columns) or for
the observations (rows). This assumption is at least ap-
proximately true in many applications, such as market bas-
ket analysis, where it is difficult to assume that the variables
(items people buy) would have any clear ordering. Likewise,
for market basket data the order of the rows might not be
very significant.

However, in many other applications the concept of an
underlying ordering of the rows or columns (or both) is ex-
tremely important. Consider the problem of paleontological
data modeling. In such data the columns correspond to
species or genera. Each row corresponds to a site, i.e., a
collection of fossil remains collected from the same location
and the same layer in rock. That is, a site is a (very incom-
plete) snapshot of the set of species that lived at a certain
location at approximately the same time. The ages or evo-
lutionary stages of the sites (rows) form a natural ordering
for the sites. This order need not be a total order, as two
sites of approximately the same age but widely separated in
space might not be comparable. The ages of the sites are
only rarely known, and the problem of seriation is to find
good estimates for the ages or ordering of the sites [17, 3,
4, 5]. For the columns, the species or genera, there is also a
natural partial ordering, the evolutionary ordering in which
the species arise.

How could one find the ordering of the sites from the ob-
served presence or absence of genera? In a good ordering
species evolve and become extinct, indicating that the oc-
currences of the species form an interval in the ordering; as
we will see, this basic property can be used in finding good
orderings. The ordering can be done, e.g., by using a spec-
tral method [6, 23, 15, 13]. The weakness in these methods
is that they produce a total order, regardless of whether the
data supports it or not. The method presented in this papers
finds the partial order shown in Figure 2, which yields much
more information about the true evolutionary relationships
between the sites and the genera.

The problem described above is not limited to paleonto-
logical applications. Similar situations occur also in genome
analysis, i.e., the problem of finding genes that predispose to
some specific disease. In this case the rows of the data corre-



spond to markers, i.e., base pairs in the genome where there
is variation between individuals, and columns correspond to
individuals. The value at position j of row i tells what is
the nucleotide in the genome of person j at the position
of the genome corresponding to row i. Since typically only
two nucleotides occur at a marker, the data can be coded
with 0s and 1s. For such data, the ordering of the markers
corresponds to the location of the points of variation in the
genome. While the locations are fairly often well known,
there are situations in which the order is uncertain. For ex-
ample, part (e.g., 20 %) of the population can have large (>
1 M base pairs) regions of the genome inverted; this implies
that there is no global total order among the markers.

What data could one use to find the ordering among the
rows from such genetic data? The underlying processes pro-
ducing the variation are mutations and recombinations, and
they lead to higher (absolute values of) correlation between
markers that are close to each other. This information can
be used to obtain good orderings. For this type of data,
the question of finding a good partial order comes close to
finding a good dependency graph for the variables.

The two applications described above have the following
characteristics in common. First, there is a notion of an
underlying partial order among the rows. Second, finding
the best ordering for the whole set of data is difficult. Third,
given a small subset of rows, we can find the best ordering
for the subset.

In this paper we give a method for finding good partial
orders P from 0-1 data. The method proceeds in stages. It
first constructs a collection of fragments of order, i.e., small
collections of rows for which there is a clear total ordering.
This task is done by selecting random subsets of, say, 5 rows
and testing all the permutations.

Second, we orient the fragments. As the methods for
evaluating the quality of an ordering are typically symmet-
ric with respect to ordering P and the reverse ordering
P R = { (B, A) | (A,B) ∈ P }, we next have to divide
the set of fragments into two subsets, one corresponding to
P and the other to P R. The division is done by using a
graph partitioning method: we consider the graph having
the fragments as vertices. The weight of an edge between
two fragments indicates how many pairs of rows are ordered
in the same way in the fragments. We use a simple local
search method for finding a reasonably good bisection of
the graph.

The third step in our method is the construction of a
partial order from the fragments from one of the classes
produced by the previous step. For this we apply a simple
greedy algorithm that looks again at all pairs of rows from
the data. For each pair (A, B) we compute the number of
fragments in which A and B occur and A precedes B or B
precedes A. If the number of times A precedes B is clearly
higher than the number of times B precedes A, then we have
evidence for (A,B) ∈ P . All such pairs cannot necessarily
be added to the partial order, as the order might become
cyclic; a greedy approach is used to select the most useful
pair to be added.

We demonstrate the usefulness of our method by apply-
ing it to paleontological data. The resulting partial orders
provide a very clear overview of the underlying structure of
the data set, and the details of the result correspond well
with the known eras of the last 25 million years. Further-
more, some aspects of the results point out probable errors

in the seriation data in existing literature; thus the method
for finding partial orders yields useful scientific information.

The rest of this paper is organized as follows. We start in
Section 2 by discussing the motivation for searching for par-
tial orders. We also describe the paleontological application
in some more detail, and formally present the problem and
describe some simplistic and infeasible methods for solving
it. The next three sections describe the three parts of the
solution. First, in Section 3, we consider the problem of
generating small totally ordered subsets of rows. Second, in
Section 4 we consider the question of orienting the fragments
by graph partitioning. Third, we describe the construction
of the partial order from the totally ordered fragments in
Section 5. Empirical results are given in Section 6. Sec-
tion 7 is a short conclusion.

2. TOTAL AND PARTIAL ORDERS
In this section we consider the motivation for finding par-

tial orders from 0-1 data. Let R be the set of attributes
(variables) of our 0-1 dataset. Let M be a set of 0-1 rows
over the attributes R. The value at column A of row t is
denoted by t(A). In our main application the data sets typ-
ically have hundreds or thousands of rows; thus quadratic
or cubic time is acceptable.

A partial order on M is a binary relation P such that
(t, t) ∈ P for all rows t ∈ M (reflexivity), if (t, u) ∈ P then
(u, t) /∈ P (symmetry), and if (t, u) ∈ P and (u, v) ∈ P ,
then (t, v) ∈ P (transitivity). The partial order is trivial,
if (t, u) ∈ P only if t = u, and P is a total order, if for all
u and v either (u, v) ∈ P or (v, u) ∈ P . Partial orders are
typically drawn as directed acyclic graphs, where the edges
deducible by transitivity are omitted (i.e., one draws only
the edges in the transitive reduction of P ). The size of a
partial order is the number of ordered pairs it contains and
is denoted by |P |.

As an example, consider paleontological data. Recall that
the columns correspond to species or genera, and each row
corresponds to a site. In a good ordering species evolve
and become extinct, indicating that the occurrences of the
species form an interval in the ordering. Thus, the ordering
of the sites below on the left is biologically not as natural as
the one on the right.

0 0 1 0 0 1
1 1 0 0 1 1
0 1 1 1 1 1
0 1 0 1 1 0
1 1 1 0 1 0

On the left side, there are several cases in which a species
is first present, then absent, and then present again; for
example, in the first column there are two zeros between
the ones. Such zeros are known as Lazarus events. The left
matrix has four Lazarus events. On the right side, there are
none.

Given a total order T on the row set M , the Lazarus count
of M with respect to T is defined as

L(M | T ) =
∣

∣

{

(u, A) | u(A) = 0

∧ ∃v ∈ M : v(A) = 1 ∧ (v, u) ∈ T

∧ ∃w ∈ M : w(A) = 1 ∧ (u, w) ∈ T
}
∣

∣.

That is, the Lazarus count of a 0-1 dataset under a certain
ordering of the rows is the number of zeros in the data that



are between the first and last ones in their column.
The question of determining whether for some total order

T we have L(M |T ) = 0 (finding an ordering of the rows of
a 0-1 matrix with no Lazarus events) is the problem of de-
termining whether a binary matrix has the consecutive ones
property. A binary matrix with the rows M is said to have
the consecutive ones property if there exists a permutation
π of the rows, such that in π(M) the ones are aligned to con-
secutive rows on every column. A well known application of
this problem is physical mapping of chromosomes [2], while
matrix envelope reduction [21] is a related problem.

In the case where L(M |T ) = 0 for some total order T , the
order T can be determined in linear time [9, 18]. In practice,
however, the data M has L(M |T ) > 0 for all total orders
T . The reason is that the data contains noise in form of
false positives (false ones) and false negatives (false zeros);
especially false zeros (cases where a genus is not observed
when it was actually present) are abundant: their number
can be about as high as the number of true ones.

A number of methods [2, 6, 13] have been proposed for
finding good ordering. In general the objective of these al-
gorithms is to find a single total order of the rows that is
optimal according to the used criteria. A typical approach
is to minimize the number of Lazarus events by some means.
However, in many cases determining a strict total order is
not useful. The available data may be insufficient to yield
a precise order on the rows. As an example, consider the
following simple matrix with one Lazarus event:

1: 1 0 0
2: 1 1 0
3: 1 0 1
4: 0 1 1
5: 0 0 1

No permutation would yield a completely error-free order-
ing, thus this matrix does not have the consecutive ones
property. But it is not hard to see that there are two other
permutations of the rows that result in one Lazarus event
as well, namely:

1: 1 0 0 1: 1 0 0
2: 1 1 0 3: 1 0 1
4: 0 1 1 and 2: 1 1 0
3: 1 0 1 4: 0 1 1
5: 0 0 1 5: 0 0 1

Every other permutation except the reversals of these three
have a higher Lazarus count. If we consider the indices of
the matrix rows, let the first one correspond to the order
(1 2 3 4 5). Then the second one is given by (1 2 4 3 5)
and the third one by (1 3 2 4 5). Forcing a total order on
the rows of the above matrix by minimizing the Lazarus
count is thus bound to contain some randomness, since all
three orders and their reversals are in fact equally good. For
example, spectral ordering [6] gives (1 2 3 4 5) as a solution.
There is no reason to prefer this over the two others if the
only criteria is number of Lazarus events.

Instead of selecting one of the orderings, we can gather
all common features of the three orders together and based
on these construct a partial order on M . In this example
it is relatively easy to see merely by looking at the orders
that in each case row 1 precedes and row 5 follows every
other row. The order changes only with respect to the three
middle rows. Restricting our attention to these, we see that

in every case row 2 precedes row 4. In this case there are no
more common features to be found. These features together
form the partial order which is depicted in Figure 1 as a
directed acyclic graph.

Note that we did not consider the reversals of the three
orders when constructing the partial order even though they
result in only one lazarus event as well. In general it is not
possible to know the correct direction of the order based on
the consecutive ones property alone. When constructing the
partial order from a set of total orders we must make sure
that at least a sufficient number of the orders “point to the
same direction”. We will address problems caused by this
in Section 4.

1

2

3

4

5

Figure 1: A directed acyclic graph that represents
the partial order on the rows (their indices) of the
example matrix. If there is no path between two
nodes then their mutual order is undetermined.

Thus it makes sense to search for partial orders instead of
total orders. Consider now a partial order P among the rows
a 0-1 matrix with the row set M . The number of Lazarus
events in M with respect to P can be defined in exactly the
same way as for the case of a total order:

L(M | P ) =
∣

∣

{

(u, A) | u(A) = 0

∧ ∃v ∈ M : v(A) = 1 ∧ (v, u) ∈ P

∧ ∃w ∈ M : w(A) = 1 ∧ (u, w) ∈ P
}
∣

∣.

That is, we count the number of zeros t(A) in the data such
that there are rows u and v before and after t with respect
to the partial order P such that u(A) = v(A) = 1.

Our problem can now be posed as follows: given the data
M , find a partial order P such that L(M |P ) is small. How-
ever, this formulation is incomplete: we can easily make
L(M |P ) to be 0 by having P to be the trivial partial order.
Thus, our task is to find a partial order P minimizing the
quantity

L(M |P ) + α(P )

where α(P ) is some function of P that is small for total or-
ders and becomes larger as P approaches the trivial partial
order. The choice of the function α is an interesting ques-
tion. Some possible choices for α(P ) are the logarithm of
the number of linear extensions of P (computing this, how-
ever, is ]P-complete [10]), or the size of P , which for n rows
varies between n for the trivial partial order and n(n + 1)/2
for a total order.

Finding the optimal partial order P from scratch is, how-
ever, quite difficult. There are several reasons for this. One
is that individual elements of the partial order P do not have
an immediate effect on L(M |P ); whether a 0 in the data
contributes to L(M |P ) depends on at least two elements of
P . The second reason is that it is not easy to construct a
good set of operations that would allow one to do heuristic
search over the set of all partial orders. In [22] the approach
used was limited to constructing series-parallel partial or-
ders, and still the set of operations is more complex than
one would wish.



For these reasons we did not develop an algorithm that
would directly aim at a search over the set of all partial
orders. Rather, we construct the partial order by first col-
lecting information about the precedence relationships be-
tween rows. We construct a set of fragments, total orders
over small subsets of the data, and use the fragments to ob-
tain good partial orders. The quality of the solutions is still
evaluated by using, among others, the quantity L(M |P ).

3. COMPUTING FRAGMENTS
In the first stage of our algorithm we compute a set of

small total orders from the data. Given the data M , a frag-
ment f of size k is a totally ordered subset of the rows of
M :

f = (u1, u2, . . . , uk),

where ui is a row of M . Such fragments of order were con-
sidered in [15], where an algorithm for discovering fragments
from unordered data is presented. The approach is similar to
the Apriori algorithm [1] for discovering frequent itemsets.
However, generating longer fragments with the method is
cumbersome because computation of fragments of length n
requires the computation of all fragments of length n−1 first.
To obtain enough information about the order we need frag-
ments containing at least 3 rows, as the notion of a Lazarus
event does not make sense for subsets of 2 rows. In practice
the methods work far better when they operate on fragments
of, say, 5 rows. If there is an underlying total order in the
data, there are

(

n

5

)

such fragments, and the algorithm of [15]
would compute all of them; this is clearly infeasible even for
moderate values of n.

The solution we use for generating fragments is simple.
We randomly select a subset M ′ containing k rows from the
dataset M , and evaluate L(M ′|T ) for all k! total orders T
on M ′. A fragment is created by a total order T together
with the set M ′ when

L(M ′|T ) ≤ µ,

where µ is the maximum number of Lazarus events allowed.
One M ′ will thus result in a number of different fragments
depending on µ. For any µ we will always get an even num-
ber of fragments. If we get the fragment f = (u1, u2, . . . , uk)
we will obtain its reversal fR = (uk, uk−1, . . . , u1) as well,
since they both have the same Lazarus count. Should the
total number of fragments produced by a subset M ′ be very
high, the rows in M ′ fail to provide useful information about
the underlying order of the complete dataset. For example,
if the sites in M ′ have no common genera, all the k! per-
mutations are equally good with a Lazarus count of zero.
To prevent massive amounts of such useless fragments be-
ing generated, we output the set of fragments produced by
M ′ only if it contains at most two (reversals excluded) frag-
ments; otherwise no fragments are produced. This proce-
dure is repeated until the desired number of fragments is
obtained.

The complexity of this step is O(k!kd) per fragment, where
k is the number of rows in the fragment and d = |R| is the
dimension of the data. In practice the running time is in-
fluenced by µ as well. When µ is set too low fragments are
formed less frequently (or possibly not at all), which results
in slower sampling.

4. ORIENTING THE FRAGMENTS
As stated in the previous sections, using the Lazarus count

to determine good orderings for the rows has a small draw-
back. For every discovered fragment f we also find its re-
versal fR. This problem may occur also with other types of
data when the criterion used for sampling fragments is in-
variant with respect to the direction of the underlying order
P . The next task is to divide the set of fragments into two
classes, one corresponding to P and the other to the reverse
of P . We call this problem orienting the fragments.

Our solution is based on graph partitioning. Given a set
S of fragments, let G be a weighted graph having as vertices
the fragments f ∈ S. For a fragment f = (u1, u2, . . . , uk),
denote T (f) = {(ui, uj)|1 ≤ i < j ≤ k}, i.e., the set of
pairs of entries occurring in f in their order. Two vertices
(fragments) f1 and f2 with f1 6= f2 are connected in G by
an edge if they share at least two elements and order them
in the same way, i.e., if C = { T (f1) ∩ T (f2) } 6= ∅. The
weight w(f1, f2) of edge (f1, f2) is given by |C|. This weight
is essentially a measure of similarity between two fragments
that simply counts the number of their common orderings.
We define w(f, f) = 0 for all f . Obviously there is no edge
between f and fR in G. Our objective is to partition the
vertices of G to sets V1 and V2 so that f and fR end up
in different sets, and that fragments in the same set are
oriented to the same direction. As a cost function we use
the sum

∑

f1∈V1,f2∈V2

w(f1, f2) (1)

of weights of edges crossing the boundary of V1 and V2.
A straightforward way of doing the graph partitioning

would be to use some spectral techniques, as in [12, 23,
20]. An alternative is to use simple local search methods,
and in these one can use some specific information about
the fragments (f and fR should end up in different sets Vi).
In our experiments we used a local search technique. The
algorithm starts by assigning for each f ∈ S one of f and
fR at random to V1 and the other to V2. Then local moves
swap f and fR until no improvement can be achieved. This
way a fragment and its reversal remain in separate sets at
every step.

The method works extremely well in practice. Construct-
ing G can be done in time O(|S|2k2) where k is the length
of a fragment.

5. DETERMINING THE PARTIAL ORDER
The previous sections described the discovery of good

fragments of order and the orientation of the orders. The
final step in the algorithm is to produce a partial order P ,
given a set V1 of total orders that are oriented in the same
direction.

In this section we consider the general problem of deter-
mining a partial order P that describes the set of total orders
in the best possible way. The same problem is addressed in
[22] and more recently in [11]. The approach of [22] is com-
putationally demanding and restricted on a certain class of
partial orders, the series-parallel ones. The method of [11] is
intended for discovering several small partial orders from a
set of sequences instead of only one that describes all or most
of the set. For our purpose a simple approach is sufficient.

Given a collection V1 of fragments, consider two rows u
and v from the data M . Let F (u, v) denote the number of



times u and v occur in the same fragment with u preceding
v, i.e.,

F (u, v) =
∣

∣{f ∈ V1 | (u, v) ∈ T (f)}
∣

∣.

Suppose F (u, v) ≈ F (v, u). In such a case the data gives no
reason to prefer either of the orderings and neither (u, v) or
(v, u) should not be included to P . On the other hand, if
F (u, v) is considerably larger than F (v, u) the data has more
evidence of the order (u, v) and we should include (u, v) to
P . We define the score function

Dε(P ) =
∑

(u,v)∈P

(

F (u, v) − (1 + ε)F (v, u)
)

, (2)

where ε is a positive real valued parameter that determines
how much more evidence we must have for F (u, v) in order
to prefer it over F (v, u).

Our method of discovering P is based on maximizing this
function. Each pair (u, v) with

∆(u, v) = F (u, v) − (1 + ε)F (v, u) > 0

is a potential candidate for inclusion into the partial order
P . It is not hard to show that in fact all such pairs (u, v)

are candidates for inclusion for which F (u,v)
F (u,v)+F (v,u)

> ε+1
ε+2

holds. However, all such pairs cannot be blindly added to
P , as the transitivity requirement might lead to violation
of the antisymmetry conditions. We use a simple greedy
approach, by adding the pairs (u, v) in descending order of
∆(u, v) and discarding the pairs that lead to violations of
antisymmetry (cycles). To make the check for antisymmetry
fast we maintain the transitive closure of P at all times. The
complexity of the method is O(n2) per added pair in P ; as
there are O(n2) potential pairs (u, v), the running time is
O(n4). In practice the method works much faster.

6. EXPERIMENTAL RESULTS
We tested the method on a paleontological dataset stem-

ming from [19]. Recall that in a 0-1 matrix the rows cor-
respond to fossil discovery sites and columns to different
genera. The number of sites and genera were 124 and 139,
respectively. Average number of genera at a site was 15.95
with a minimum of 10 and a maximum of 39 (standard devi-
ation 5.6). The data has lots of false zeros, because there are
several natural reasons why a species or genus is not found
even though the species actually occurred at the site. The
probability of a false zero is estimated to be roughly 0.5. In
addition, a small fraction of the ones are incorrect due to
human error (approximately 1 percent).

The sites have been classified to 14 temporal classes (the
MN classes) based on their approximate age. The MN num-
bers increase as the sites get more recent with the youngest
ones in class 17. It should be emphasized that the classifica-
tion of sites to MN classes is a difficult task, and the criteria
are known to vary (see, e.g., [7, 3]). One of our goals is to
look for sites whose classification should be reevaluated.

Still, a comparison with the MN system is an important
evaluation criterion for our method. We denote the partial
order our algorithm gives by P . Clearly the MN classes
define a partial order on the sites as well; we call it Pmn.
Given P it is interesting to see how well it correlates with
Pmn, that is, how many of the pairwise orderings present in
P are compatible with the MN numbers. Denote the MN
number of site u by umn. Similarly, one can look at the pairs
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Figure 3: Upper panel: the completeness γ of the
resulting partial order for different values of µ and
ε as a function of the number of sampled fragments.
Lower panel: the compatibility of P with respect to
PMN for different values of µ and ε as a function of
the number of sampled fragments.

of sites for which P makes no judgment, and check how
many are unordered or near to each other in Pmn as well.
More precisely, let

c =
∣

∣ { (u, v) ∈ P | umn < vmn }
∣

∣,

c̄ = |P | − c,

dx =
∣

∣

{

{u, v}
∣

∣ (u, v) /∈ P ∧ (v, u) /∈ P ∧ |umn − vmn| ≤ x
}

∣

∣,

and

d̄x =
∣

∣

{

{u, v}
∣

∣ (u, v) /∈ P ∧ (v, u) /∈ P ∧ |umn − vmn| > x
}

∣

∣

with either x = 1 or x = 2. Thus c and dx are measures of
similarity between P and Pmn when ordered and unordered
elements are considered. Should it happen that P orders
the sites the “wrong” way (recent to old), we simply use the
reverse P R. Note that

c + c̄ + dx + d̄x = |T |,
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Figure 2: The discovered partial order for the sites presented in three parts (n = 4000, l = 5, µ = 2 and
ε = 1). The ordering progresses from top to down and left to right. The number in brackets next to the
name of a site is the MN class of the site. The original order is connected but has been split to pieces for
presentational purposes; nodes in the bottom and top are repeated for ease of understanding. The image
was generated with the tred and dot utilities provided by the Graphviz graph visualization software [14]. See
also www.graphviz.org.
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where T is some total order on the sites. The fraction c+dx

|T |

can be considered a measure of compatibility of P with re-
spect to Pmn. Another informative property of P is its com-
pleteness γ, defined as |P |/|T |.

To evaluate the method’s sensitivity with respect to the
length of a fragment l, total number of sampled fragments n,
the value of ε and µ, we computed P varying the parameter
values as follows: n ∈ {1000, 2000, 4000, 8000, 10000}, l ∈
{4, 5}, ε ∈ {0, 1} and µ ∈ {2, 4}.

The results are shown in Table 1 and Figures 3, 4, 5 and 6.
The values of γ, c, d2 and L(M |P ) are provided as well for
Pmn. Obviously Pmn is compatible with itself, hence the high
values of c and d2. The low Lazarus count of Pmn is largely
explained by its low completeness. All partial orders found
by the algorithm are more specific than Pmn.

A number of observations can be made from Figure 3.
First of all, the number of fragments has in practice only a
minor effect both on the completeness γ and on the com-
patibility of P and Pmn. Thus, a high coverage of the sites
is achieved already with a low fragment count. The com-
pleteness increases slightly as n increases when ε = 0; for
larger ε the effect is less clear. More obvious is the effect
of ε itself on γ. This is to be expected as the number of
candidate pairs for inclusion to P must decrease for larger
ε. Increasing µ from 2 to 4 seems to cause a slight decrease
in the completeness.

Figure 4 plots c on the horizontal and d2 on the vertical
axis. Clearly c and d2 exhibit a inversely proportional rela-
tionship, that is, as the number of ordered pairs in common
to P and Pmn increases, the number of common unordered
elements decreases.

L(M |P ) is minimized when P is the trivial partial order
with γ = 0. Conversely, L(M |T ) is maximized for some total
order T . L(M |P ) might be maximized for some partial order
as well, but completing P to a total order can not decrease
the Lazarus count. It follows that L(M |P ) increases as γ
does. Figure 5 is in accordance with this proposition. The
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Figure 5: The Lazarus count versus the complete-
ness γ of the partial order P .

Lazarus count of the total order given by spectral ordering
is 3792; most of the resulting partial orders have a smaller
Lazarus count, indicating that the partial orders tend to
omit precedence relations that cause Lazarus events. Also
partial orders with a high completeness (γ > 0.99) tend to
perform well in terms of L(M |P ): this supports our claim
that the partial orders describe relevant orderings of the
data.

The probability Prob((u, v) ∈ Pmn|(u, v) ∈ P ) is given by
c/(c + c̄). It determines the probability of a pair (u, v) ∈
P being correct with respect to Pmn. Figure 6 indicates
a reasonably strong correlation with this probability and
L(M |P ). Orders resulting in less Lazarus events are also
more “correct” and vice versa.

The results show that the algorithm produces partial or-
ders that are in quite good agreement with the partial order
given by the MN system. The correspondence is by no means
full; there are interesting variations between the orderings.

One partial order generated by our method was also qual-
itatively analyzed. The analysis was based on the visual
description of the partial order given in Figure 2. Of ev-
ery site is given its name and previously known MN class
(in brackets). The visualized graph is the transitive reduc-
tion of the original one and has been split to three parts for
ease of presentation. Note that only the arrows are signif-
icant, the nodes are positioned to minimize edge crossings.
Thus, even though e.g. Sandelzhausen is placed right next to
Inönü I (see left part of Figure 2) one should not consider
these two more similar than Sandelzhausen and Stätzling,
for instance. Constructing the transitive reduction for the
visualization can in practice be very slow.

The overall pattern generated is in remarkable agreement
with current understanding of the evolutionary history of
European land mammal faunas [7, 24]. For example, the
first cluster (Wintershof-West to Artesilla) comprises early
Miocene localities. (The one apparent exception, the site
Hambach 6C, has a faunal list entirely compatible with an
MN 5 age.) As another example, the partial order shows
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Figure 6: The Lazarus count versus the the fraction
of correct pairs in P with respect to Pmn.

clearly the transition to the late Miocene, defined by the en-
try of the horse genus Hipparion from North America. The
ordering of these sites shows an interesting pattern. Three
Hipparion-localities (Massenhausen, Wissberg and Ruda-
banya) cluster with last middle Miocene localities, most
likely owing to their high content of relictual faunal ele-
ments [8]. Otherwise the early (MN 9) late Miocene locali-
ties form a homogeneous group (Hostalets de Pierola Supe-
rior/Esselborn/Can Ponsic to Charmoille).

Similar comments can be made on the whole of the partial
order. Altogether the order shows a very good correspon-
dence between the previously known ages of the sites, and
approximately 6–7 MN classes of sites will be re-evaluated
on the basis of the partial order.

While the worst-case running times of the algorithm are
quite large, they run reasonably fast in practice. The bot-
tleneck of the process is the sampling of fragments, which
is largely affected by the fragment length l, the maximal
Lazarus count µ and obviously the size of R (number of gen-
era in our case). Decreasing µ or increasing l or |R| makes
the sampling slower, because the probability of a random
set of l rows having a permutation with a Lazarus count less
than µ clearly decreases as l increases and/or µ decreases.

7. CONCLUDING REMARKS
We have described a method for discovering a partial or-

der from 0-1 data. The approach first constructs short total
orders, fragments, from the data, then orients them, and
finally uses the precedence information in the patterns to
form the partial order. We have applied the method to pa-
leontological data, and the results yield novel information
about several fossil sites.

As mentioned in the introduction, the approach can also
be used for other types of data. The crucial features of the
data are the following. First, there is a notion of an under-
lying partial order among the rows. Second, finding the best
ordering for the whole set of data should be difficult. Third,

n l µ ε γ c d2 L(M |P )
2000 5 2 0 0.977 6519 16 3688
2000 5 2 1 0.966 6455 29 3669
2000 5 2 2 0.962 6442 31 3639
2000 5 4 0 0.978 6395 37 4175
2000 5 4 1 0.968 6372 51 3922
2000 5 4 2 0.963 6373 53 3859
4000 5 2 0 0.984 6521 22 4010
4000 5 2 1 0.977 6471 11 3975
4000 5 2 2 0.967 6459 34 3880
4000 5 4 0 0.985 6520 21 3681
4000 5 4 1 0.977 6498 24 3607
4000 5 4 2 0.964 6441 41 3542
8000 5 2 0 0.996 6581 2 3765
8000 5 2 1 0.976 6475 22 3781
8000 5 2 2 0.957 6390 32 3632
8000 5 4 0 0.991 6559 7 3660
8000 5 4 1 0.969 6488 30 3526
8000 5 4 2 0.950 6416 43 3378

10000 5 2 0 0.994 6587 1 3696
10000 5 2 1 0.970 6521 14 3481
10000 5 2 2 0.961 6423 21 3578
10000 5 4 0 0.992 6544 3 3671
10000 5 4 1 0.969 6484 30 3446
10000 5 4 2 0.945 6433 40 3233
MN system (Pmn) 0.917 6995 631 2957

Table 1: Results of experiments. n: the number of
fragments; l: the length of a fragment; µ: the max-
imum number of Lazarus events allowed per frag-
ment; ε: the parameter of Equation 2; c, d2: see dis-
cussion above; L(M |P ): the Lazarus count of the
partial order P .

given a small subset of rows, we can find the best ordering
for the subset. We have made preliminary experiments on
marker data from medical genetics, and the method yields
promising results also there. For that application, the ques-
tion of finding a good partial order resembles the problem
of finding a good dependency graph for the variables.

The proposed method contains interesting topics for fur-
ther research. Determining good criteria for accepting a set
of fragments produced by the subset M ′ is crucial for the
performance of the sampling. How µ should be set clearly
depends on l and the size of R, but also on the estimated
number of false zeros in the data. This dependence should
be investigated further, not only because it affects the run-
ning time of sampling, but also because it has an effect on
the quality of the fragments. Unsuitable values of µ can
cause certain rows (sites) to have a higher frequency than
others in the produced fragments.

The problem of fragment orientation is not restricted to
a case where the fragments are generated by minimizing
the Lazarus count. Suppose we construct fragments by us-
ing a simple likelihood function that is based on pairwise
similarities of the observations. If the similarity measure is
symmetric, the likelihoods of fragments f and fR are the
same.

Perhaps the most interesting open question is what type
of an algorithm could be used to find a partial order P min-
imizing

L(M |P ) + α(P )



for some suitable chosen functions α describing the com-
plexity of the partial order. As mentioned in Section 2, this
problem seems fairly difficult: the space of potential partial
orders is large and it seems difficult to do even local search in
it. We are currently pursuing two approaches to this prob-
lem: one is based on the idea of using MCMC techniques
over the set of partial or total orders. The other is based on
randomized algorithms [16].
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